Name:					
Name:	 		 	 	

Student ID:	
Student ID:	

Date: _____

Worksheet #7 Decision Making and Iteration

Objectives

- To understand the decision making and iteration process in ARM processor
- To create decision making instructions from branch instructions in ARM
- To create iteration instructions from branch instructions in ARM
- 1. Create a new project, then type and add the following code to the project.

	AREA PROG7_1, CODE, READONLY ENTRY
start	
	MOV R0, #X
	CMP R0, #5
	BEQ endif
	LDR R1, =0x11111111
endif	LDR R2, =0xFFFFFFF
loop	B loop
_	END

Program 7.1

- 2. Replace X in the program above with the value shown in Table 7.1.
- 3. Build and Run the program. Then observe and record the results in Table 7.1.

The values of	The results from BEQ instruction	
Χ	R1	R2
3		
5		
7		

Table 7.1

Suppose that we set R0 to a value that is greater than 7 or less than 3. What values will be stored in R1 and R2?

Why was the value of R1 not changed in case that X is set to 5?

Why was the value of R2 not changed in any values of X?

4. From Program 7.1, replace the BEQ instruction with BNE instruction as follows:

→

BEQ endif

BNE endif

5. Repeat the step 2 and 3 again. Then observe and record the results in Table 7.2.

The values of	The results from BNE instruction	
X	R1	R2
3		
5		
7		

Table 7.2

Suppose that we set R0 to a value that is greater than 7 or less than 3. What values will be stored in R1 and R2?

Why was the value of R1 not changed in case that X is set to 5?

6. Create a new project, then type and add the following code to the project.

	AREA PROG7_2, CODE, READONLY ENTRY
start	
	MOV R0, #X
	CMP R0, #5
	BGT endif
	LDR R1, =0x11111111
endif	LDR R2, =0xFFFFFFF
loop	B loop
1	END

Program 7.2

7. Replace X in the program above with the value shown in Table 7.3.

8. Build and Run the program. Then observe and record the results in Table 7.3.

The values of	The results from	The results from BGT instruction	
Χ	R1	R2	
3			
4			
5			
6			
7			

Table 7.3

Suppose that we set R0 to a value that is greater than 7 or less than 3. What values will be stored in R1 and R2?

(R0 > 7)	R1 =
(R0 < 3)	R1 =

9. From Program 7.2, replace the BGT instruction with BGE instruction as follows:

10. Repeat the step 7 and 8 again. Then observe and record the results in Table 7.4.

The values of	The results from BGE instruction	
X	R1	R2
3		
4		
5		
6		
7		

Table 7.4

Compare the results between Table 7.3 and 7.4. Are they different? Why?

11. From Program 7.2, replace the BGT instruction with BLT instruction as follows:

BLT endif

BGT endif **→**

12. Repeat the step 7 and 8 again. Then observe and record the results in Table 7.5.

The values of	The results from	The results from BLT instruction	
Χ	R1	R2	
3			
4			
5			
6			
7			

Table 7.5

13. From Program 7.2, replace the BGT instruction with BGE instruction as follows:

BGT endif → BLE endif

14. Repeat the step 7 and 8 again. Then observe and record the results in Table 7.6.

The values of	The results from	The results from BLE instruction	
Χ	R1	R2	
3			
4			
5			
6			
7			

Table 7.6

Compare the results between Table 7.5 and 7.6. Are they different? Why?

Can we compare two negative values in ARM? If we replace the first two instructions in program 7.2 with **MOV R0**, **# -10** and **CMP R0**, **#-5**. What do the results store in R1,R2?

	AREA PROG7_3, CODE, READONLY ENTRY
start	
	LDR R1, $=X$
	LDR R2, =Y
	MOV R0, #0
while	CMP R1, R2
	BGT endwhile
	ADD R0, R0, R1
	ADD R1, R1, #1
	B while
endwhile	
stop	B stop
-	END

15. Create a new project, then type and add the following code to the project.

Program 7.3

16. Replace X and Y in the program above with the values as shown in Table 7.7.

17. Build and Run the program. Then observe and record the results in Table 7.7.

The values of		The results from Program 7.3
Χ	Y	R0
1	5	
2	7	
3	9	
1	10	

Table 7.7

Program 7.3 shows a way doing to add values from X to Y. Modify the program to compute n!, where n is a non-negative integer stored in register R2. Then store the result in R0.

<u>Hint</u> 5! = 5 * 4 * 3 * 2 * 1 (use **MUL** instruction)

	AREA Entr	A Factorial, CODE, READONLY	
start			
loop	B END	loop	

18. Create a new project, then type and add the following code to the project.

	AREA PROG7_4, CODE, READONLY
	ENTRY
start	
	MOV R0, #X
	CMP R0, #5
	BHI endif
	LDR R1, =0x11111111
endif	LDR R2, =0xFFFFFFF
loop	B loop
_	END

Program 7.4

19. Replace X in the program above with the value shown in Table 7.8.

20. Build and Run the program. Then observe and record the results in Table 7.8.

The values of	The results from BHI instruction	
X	R1	R2
3		
4		
5		
6		
7		

Table 7.8

From Program 7.4, if we replace the first two instructions in the program with **MOV R0**, **# -10** and **CMP R0**, **#-5**. What do the results store in R1,R2? Are the flow of program correct? Why?

21. From Program 7.4, replace the BHI instruction with BHS instruction as follows:

BHI endif 🔶

BHS endif

22. Repeat the step 19 and 20 again. Then observe and record the results in Table 7.9.

The values of	The results from	BHS instruction
Χ	R1	R2
3		
4		
5		
6		
7		

Table 7.9

Compare the results between Table 7.3, 7.4 and Table 7.8, 7.9. Are they different?

23. From Program 7.4, replace the BHI instruction with BLO instruction as follows:

BLO endif

24. Repeat the step 19 and 20 again. Then observe and record the results in Table 7.10 The values of The results from BLO instruction

The values of	Inc results nom	
X	R1	R2
3		
4		
5		
6		
7		

→

Table 7.10

25. From Program 7.4, replace the BHI instruction with BLS instruction as follows:

BHI endif → BLS endif

26. Repeat the step 19 and 20 again. Then observe and record the results in Table 7.11

The values of	The results from	BLS instruction
Χ	R1	R2
3		
4		
5		
6		
7		

Table 7.11

27. Create a new project, then type and add the following code to the project.

	AREA Power_x_y	, CODE, READONLY
	ENTRY	
start	LDR R1,=X	; x = 3
	LDR R2, =Y	; y = 4
	CMP R2, #0	; if $(y = 0)$
	BNE else1	; {
	MOV R0, #1	; result = 1
	B endif1	; }
else1		; else {
	MOV R0, R1	; result = x
	CMP R2, #1	; $if(y > 1)$
	BLS endif2	; {
	SUBS R2, R2, #1	; $y = y - 1$
do1		; do {
	MUL R0, R1, R(); result = result \times x
	SUBS R2, R2, #1	; y = y -1
	BNE do1	; } while $(y \neq 0)$
endif2		; }
endifl		;}
stop	B stop	
_	END	Program 7.5

28. Replace X and Y in the program above with the values as shown in Table 7.12.

The values of The results from Program 7.5 Х Y R0

29. Build and Run the program. Then observe and record the results in Table 7.12.

From the result shown in Table 7.12, what does the program do?

30. Modify the following program to replace the eight **ADD** instructions with iterative loop.

start	LDR R1,=0x12
	ADD R0, R0, R1, Isl #1 ADD R0, R0, R1, Isl #2 ADD R0, R0, R1, Isl #3 ADD R0, R0, R1, Isl #3 ADD R0, R0, R1, Isl #4 ADD R0, R0, R1, Isl #5 ADD R0, R0, R1, Isl #6 ADD R0, R0, R1, Isl #7 ADD R0, R0, R1, Isl #8
stop	B stop