Name:	 	 	 	
Name:				

Student ID: ______ Student ID: ______ Date: _____

Worksheet #5 Bitwise Operations

Objectives

- To understand the logical operators and their operations
- To comprehend the usage of bit manipulation instructions and their effects
- To understand the usage of shift and rotate instructions and their behavior

1. Create a new project, then type and add the following code to the project.

```
AREA PROG5_1, CODE, READONLY
ENTRY
start
LDR R0, =X
LDR R1, =Y
AND R2, R0, R1
loop
END
```

Program 5.1

- 2. Replace X and Y in the program above with the values as shown in Table 5.1.
- 3. Build and Run the program. Then observe and record the results in Table 5.1.

The values of		The results from AND instruction
Χ	Y	R2
0 x57BD	0 x0000	
0 x57BD	0 xFFFF	
0 x12345678	0 x000000FF	
0 x12345678	0 x0000FF00	
0 x12345678	0 x00FF0000	
0x 12345678	0x FF000000	

Table 5.1

Write an instruction to **clear** bits 0, 2, 4, 6 of the value stored in R0 then store the result back to R0 (using AND instruction). <u>Hint</u> $1 \cdot x = x$ and $0 \cdot x = 0$.

4. From Program 5.1, replace the AND instruction with BIC instruction as follows:

AND R2, R0, R1 → BIC R2, R0, R1

5. Repeat the step 2 and 3 again. Then observe and record the results in Table 5.2.

The values of		The results from BIC instruction
X	Y	R2
0x 57BD	0x 000F	
0x57BD	0 xFFFF	
0 x12345600	0x 000000FF	
0 x12345678	0 x0000FF00	
0 x12345678	0 x00FF0000	
0 x123456FF	0x FF000000	

Table 5.2

6. From Program 5.1, replace the AND instruction with ORR instruction as follows:

AND R2, R0, R1 → ORR R2, R0, R1

7. Repeat the step 2 and 3 again. Then observe and record the results in Table 5.3.

The values of		The results from ORR instruction
X	Y	R2
0x57BD	0 x0000	
0x 57BD	0 xFFFF	
0 x12345600	0x 000000FF	
0 x12345678	0x 0000FF00	
0 x12345678	0 x00FF0000	
0 x123456FF	0 xFF000000	

Table 5.3

Write an instruction to **set** bits 1, 3, 5, 7 of the value stored in R0 then store the result back to R0 (using ORR instruction). <u>Hint</u> 1 + x = 1 and 0 + x = x.

8. From Program 5.1, replace the AND instruction with EOR instruction as follows:

AND R2, R0, R1 → EOR R2, R0, R1

9. Repeat the step 2 and 3 again. Then observe and record the results in Table 5.4.

The values of		The results from EOR instruction
X	Y	R2
0x7BD	0 x123	
0 x57A0	0x 000F	
0 x500A	0 x0FF0	
0 x0000	0x 0000	
0 x0000	0 xFFFF	
0 xFFFF	0 xFF00	

Write an instruction to **invert** bits 1, 3, 5, 7 of the value stored in R0 then store the result back to R0 (using EOR instruction). <u>Hint</u> $1 \oplus x = \overline{x}$ and $0 \oplus x = x$.

10. Create a new project, then type and add the following code to the project.

	AREA ENTR	PROG5_2, CODE, READ Y	DONLY	
start				
	LDR	R0, =0x10		
	MOV	R1, #X	2	
	LSL	R2, R0, R1	3	
loop	В	loop		
1	END	1		

Program 5.2

11. Replace X in the program above with the values as shown in Table 5.5.

12. Build and Run the program. Then observe and record the results in Table 5.5.

The values of	The results from LSL instruction
X	R2
0	
1	
2	
3	
4	
5	

Table 5.5

13. From Program 5.2, replace the instructions ① and ③ with:

LDR R0, =0x10	→	LDR R0, =1024
LSL R2, R0, R1	→	LSR R2, R0, R1.

14. Repeat the step 11 and 12 again. Then observe and record the results in Table 5.6.

The values of	The results from LSR instruction
X	R2
0	
1	
2	
3	
4	
5	

15. Create a new project, then type and add the following code to the project.

```
AREA PROG5_3, CODE, READONLY
ENTRY
start
LDR R0, =0x80123450
MOV R1, #X
ASR R2, R0, R1
loop
END
```

Program 5.3

16. Replace X in the program above with the values as shown in Table 5.5.

17. Build and Run the program. Then observe and record the results in Table 5.5.

The values of	The results from	The results from ASR instruction		
X	R2 in hex format	R2 in binary format		
0				
1				
2				
3				
4				
5				

Table 5.5

→

18. From Program 5.3, replace the ASR instruction with ROR instruction as follows:

ASR R2, R0, R1

ROR R2, R0, R1

19. Repeat the step 16 and 17 again. Then observe and record the results in Table 5.6.

The values of	The results f	The results from ROR instruction		
X	R2 in hex format	R2 in binary format		
0				
1				
2				
3				
4				
5				

20. Create a new project, then type and add the following code to the project.

	AREA ENTR	PROG5_4, CODE, REA Y	ADONLY
start			
	MOV	al, #0xFF	
	MOV	a2, #64	
	XXX	a2, #2	2
	MOV	a3, #4	
	ADD	al, al, a2, YYY a3	
	EOR	a2, a2, #0x65	
	ORR	al, al, a2, ZZZ #8	6
loop	В	loop	
-	END	-	

Program 5.4

16. Replace XXX, YYY and ZZZ in the line @, @ and @ of Program 5.4 with the instructions shown in Table 5.7.

17. Build and Run the program. Then observe and record the results in Table 5.7.

Replacewith			Results in		
XXX	YYY	ZZZ	R0	R1	R2
LSL	LSL	LSL			
LSR	LSR	LSR			
ASR	ASR	ASR			
ROR	ROR	ROR			

Table	5.7
-------	-----

18. Complete the following program to make data stored in registers as follow. R2 = 0x10305070, R3 = 0xE2C4A688, R4 = 0x10300000

	AREA PROG5_5, CODE, READONLY					
	ENTRY					
start						
	LDR R0, =0x12345678					
	LDR R1, =0xF0F0F0F0					
	R2, R0, R1					
	R3, R0, R1					
	AND R4, R0, R1,					
loop	Bloop					
	END					

- 19. Suppose that R0 stores an arbitrary 32-bit value before running the program. Write an assembly program that separates the value in R0 into 4 groups of byte. Then do the addition all these 4 groups of byte together and store the result of addition in R7.
- <u>**Ex.**</u> R0 = 0x12345678

